diff --git a/docs/release_notes.rst b/docs/release_notes.rst index 6b02f8dc..b7d10a0f 100644 --- a/docs/release_notes.rst +++ b/docs/release_notes.rst @@ -26,6 +26,8 @@ Upcoming Release * Corrected CO2 content in biogas +* Change to DEA costs for Fischer-Tropsch and methanolisation + `v0.13.2 `__ (13th June 2025) ======================================================================================= diff --git a/inputs/manual_input.csv b/inputs/manual_input.csv index 5f5f84bc..7ef4727d 100644 --- a/inputs/manual_input.csv +++ b/inputs/manual_input.csv @@ -219,16 +219,6 @@ methanol-to-kerosene,lifetime,2050,30,years,-,"Concawe (2022): E-Fuels: A techno methanol-to-kerosene,investment,2050,200000,EUR/MW_kerosene,2020,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.", methanol-to-kerosene,FOM,2050,4.5,%/year,2020,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.", methanol-to-kerosene,VOM,2050,1.35,EUR/MWh_kerosene,2020,"Concawe (2022): E-Fuels: A technoeconomic assessment of European domestic production and imports towards 2050 (https://www.concawe.eu/wp-content/uploads/Rpt_22-17.pdf), table 94.", -Fischer-Tropsch,efficiency,2020,0.799,per unit,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.", -Fischer-Tropsch,investment,2020,788000,EUR/MW_FT,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,2020,20,years,2017,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Fischer-Tropsch,FOM,2020,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,investment,2030,677000,EUR/MW_FT,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,2030,20,years,2017,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Fischer-Tropsch,FOM,2030,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -Fischer-Tropsch,investment,2050,500000,EUR/MW_FT,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -Fischer-Tropsch,lifetime,2050,20,years,2017,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -Fischer-Tropsch,FOM,2050,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", Fischer-Tropsch,hydrogen-input,2020,1.531,MWh_H2/MWh_FT,,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." Fischer-Tropsch,hydrogen-input,2030,1.421,MWh_H2/MWh_FT,,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." Fischer-Tropsch,hydrogen-input,2040,1.363,MWh_H2/MWh_FT,,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output)." @@ -241,15 +231,6 @@ Fischer-Tropsch,carbondioxide-input,2020,0.36,t_CO2/MWh_FT,,"DEA (2022): Technol Fischer-Tropsch,carbondioxide-input,2030,0.326,t_CO2/MWh_FT,,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,carbondioxide-input,2040,0.301,t_CO2/MWh_FT,,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." Fischer-Tropsch,carbondioxide-input,2050,0.276,t_CO2/MWh_FT,,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT)." -methanolisation,investment,2020,788000,EUR/MW_MeOH,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,2020,20,years,2017,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -methanolisation,FOM,2020,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,investment,2030,677000,EUR/MW_MeOH,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,2030,20,years,2017,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -methanolisation,FOM,2030,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", -methanolisation,investment,2050,500000,EUR/MW_MeOH,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected." -methanolisation,lifetime,2050,20,years,2017,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.", -methanolisation,FOM,2050,3,%/year,2017,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.", methanolisation,electricity-input,0,0.271,MWh_e/MWh_MeOH,,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.", methanolisation,hydrogen-input,0,1.138,MWh_H2/MWh_MeOH,,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH methanolisation,carbondioxide-input,0,0.248,t_CO2/MWh_MeOH,,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.", diff --git a/outputs/US/costs_2020.csv b/outputs/US/costs_2020.csv index 613eedf3..8dae2c80 100644 --- a/outputs/US/costs_2020.csv +++ b/outputs/US/costs_2020.csv @@ -3921,12 +3921,10 @@ electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost a electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0,, electrobiofuels,C in fuel,0.9245,per unit,Stoichiometric calculation,,,, electrobiofuels,FOM,2.4,%/year,combination of BtL and electrofuels,,2015.0,, -electrobiofuels,VOM,4.957,EUR/MWh_th,combination of BtL and electrofuels,,2022.0,, electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,,,, electrobiofuels,efficiency-biomass,1.3183,per unit,Stoichiometric calculation,,,, electrobiofuels,efficiency-hydrogen,1.0309,per unit,Stoichiometric calculation,,,, -electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation,,,, -electrobiofuels,investment,1155460.1124,EUR/kW_th,combination of BtL and electrofuels,,2022.0,, +electrobiofuels,efficiency-tot,0.5545,per unit,Stoichiometric calculation,,,, electrolysis,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0,, electrolysis,efficiency,0.5773,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0,, electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0,, @@ -4102,14 +4100,14 @@ methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 201 methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0,, methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker,,, methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ",,, -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0,, +methanolisation,FOM,2.9032,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Fixed O&M,2020.0,, methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,,,, methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",,,, methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",,,, methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH,,, methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH,,, -methanolisation,investment,819108.478,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0,, -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0,, +methanolisation,investment,1345.9296,EUR/kW_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Specific investment,2020.0,, +methanolisation,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Technical lifetime,2020.0,, micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0,, micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0,, micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0,, diff --git a/outputs/US/costs_2025.csv b/outputs/US/costs_2025.csv index 891bd53b..352ac08c 100644 --- a/outputs/US/costs_2025.csv +++ b/outputs/US/costs_2025.csv @@ -4007,12 +4007,10 @@ electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost a electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0,, electrobiofuels,C in fuel,0.9257,per unit,Stoichiometric calculation,,,, electrobiofuels,FOM,2.5263,%/year,combination of BtL and electrofuels,,2015.0,, -electrobiofuels,VOM,4.5072,EUR/MWh_th,combination of BtL and electrofuels,,2022.0,, electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,,,, electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation,,,, electrobiofuels,efficiency-hydrogen,1.0469,per unit,Stoichiometric calculation,,,, -electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation,,,, -electrobiofuels,investment,1137499.3937,EUR/kW_th,combination of BtL and electrofuels,,2022.0,, +electrobiofuels,efficiency-tot,0.5721,per unit,Stoichiometric calculation,,,, electrolysis,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0,, electrolysis,efficiency,0.5874,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0,, electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0,, @@ -4188,14 +4186,14 @@ methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 201 methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0,, methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker,,, methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ",,, -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0,, +methanolisation,FOM,2.9032,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Fixed O&M,2020.0,, methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,,,, methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",,,, methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",,,, methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH,,, methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH,,, -methanolisation,investment,761417.4621,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0,, -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0,, +methanolisation,investment,1345.9296,EUR/kW_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Specific investment,2020.0,, +methanolisation,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Technical lifetime,2020.0,, micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0,, micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0,, micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0,, diff --git a/outputs/US/costs_2030.csv b/outputs/US/costs_2030.csv index 397336d8..226b6383 100644 --- a/outputs/US/costs_2030.csv +++ b/outputs/US/costs_2030.csv @@ -4163,12 +4163,10 @@ electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost a electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0,, electrobiofuels,C in fuel,0.9269,per unit,Stoichiometric calculation,,,, electrobiofuels,FOM,2.6667,%/year,combination of BtL and electrofuels,,2015.0,, -electrobiofuels,VOM,4.0691,EUR/MWh_th,combination of BtL and electrofuels,,2022.0,, electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,,,, electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation,,,, electrobiofuels,efficiency-hydrogen,1.0637,per unit,Stoichiometric calculation,,,, -electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation,,,, -electrobiofuels,investment,1119385.9963,EUR/kW_th,combination of BtL and electrofuels,,2022.0,, +electrobiofuels,efficiency-tot,0.5894,per unit,Stoichiometric calculation,,,, electrolysis,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0,, electrolysis,efficiency,0.6217,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0,, electrolysis,efficiency-heat,0.2228,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0,, @@ -4344,14 +4342,14 @@ methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 201 methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0,, methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker,,, methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ",,, -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0,, +methanolisation,FOM,2.8,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Fixed O&M,2020.0,, methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,,,, methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",,,, methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",,,, methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH,,, methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH,,, -methanolisation,investment,703726.4462,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0,, -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0,, +methanolisation,investment,1085.4271,EUR/kW_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Specific investment,2020.0,, +methanolisation,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Technical lifetime,2020.0,, micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0,, micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0,, micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0,, diff --git a/outputs/US/costs_2035.csv b/outputs/US/costs_2035.csv index 4e2fbb20..8d599b3b 100644 --- a/outputs/US/costs_2035.csv +++ b/outputs/US/costs_2035.csv @@ -4187,12 +4187,10 @@ electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost a electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0,, electrobiofuels,C in fuel,0.9281,per unit,Stoichiometric calculation,,,, electrobiofuels,FOM,2.7484,%/year,combination of BtL and electrofuels,,2015.0,, -electrobiofuels,VOM,3.6784,EUR/MWh_th,combination of BtL and electrofuels,,2022.0,, electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,,,, electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation,,,, electrobiofuels,efficiency-hydrogen,1.081,per unit,Stoichiometric calculation,,,, -electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation,,,, -electrobiofuels,investment,1101272.599,EUR/kW_th,combination of BtL and electrofuels,,2022.0,, +electrobiofuels,efficiency-tot,0.6019,per unit,Stoichiometric calculation,,,, electrolysis,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0,, electrolysis,efficiency,0.6374,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0,, electrolysis,efficiency-heat,0.2039,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0,, @@ -4368,14 +4366,14 @@ methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 201 methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0,, methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker,,, methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ",,, -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0,, +methanolisation,FOM,2.9787,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Fixed O&M,2020.0,, methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,,,, methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",,,, methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",,,, methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH,,, methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH,,, -methanolisation,investment,657729.5552,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0,, -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0,, +methanolisation,investment,1020.3015,EUR/kW_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Specific investment,2020.0,, +methanolisation,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Technical lifetime,2020.0,, micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0,, micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0,, micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0,, diff --git a/outputs/US/costs_2040.csv b/outputs/US/costs_2040.csv index 4da1f852..d0342fac 100644 --- a/outputs/US/costs_2040.csv +++ b/outputs/US/costs_2040.csv @@ -4187,12 +4187,10 @@ electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost a electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0,, electrobiofuels,C in fuel,0.9292,per unit,Stoichiometric calculation,,,, electrobiofuels,FOM,2.8364,%/year,combination of BtL and electrofuels,,2015.0,, -electrobiofuels,VOM,3.2988,EUR/MWh_th,combination of BtL and electrofuels,,2022.0,, electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,,,, electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation,,,, electrobiofuels,efficiency-hydrogen,1.0989,per unit,Stoichiometric calculation,,,, -electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation,,,, -electrobiofuels,investment,1083159.2016,EUR/kW_th,combination of BtL and electrofuels,,2022.0,, +electrobiofuels,efficiency-tot,0.6145,per unit,Stoichiometric calculation,,,, electrolysis,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0,, electrolysis,efficiency,0.6532,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0,, electrolysis,efficiency-heat,0.1849,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0,, @@ -4368,14 +4366,14 @@ methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 201 methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0,, methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker,,, methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ",,, -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0,, +methanolisation,FOM,3.1818,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Fixed O&M,2020.0,, methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,,,, methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",,,, methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",,,, methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH,,, methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH,,, -methanolisation,investment,611732.6641,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0,, -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0,, +methanolisation,investment,955.1759,EUR/kW_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Specific investment,2020.0,, +methanolisation,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Technical lifetime,2020.0,, micro CHP,FOM,6.25,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0,, micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0,, micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0,, diff --git a/outputs/US/costs_2045.csv b/outputs/US/costs_2045.csv index fa497450..81457056 100644 --- a/outputs/US/costs_2045.csv +++ b/outputs/US/costs_2045.csv @@ -4187,12 +4187,10 @@ electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost a electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0,, electrobiofuels,C in fuel,0.9304,per unit,Stoichiometric calculation,,,, electrobiofuels,FOM,2.9164,%/year,combination of BtL and electrofuels,,2015.0,, -electrobiofuels,VOM,2.8959,EUR/MWh_th,combination of BtL and electrofuels,,2022.0,, electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,,,, electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation,,,, electrobiofuels,efficiency-hydrogen,1.1173,per unit,Stoichiometric calculation,,,, -electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation,,,, -electrobiofuels,investment,1065045.8042,EUR/kW_th,combination of BtL and electrofuels,,2022.0,, +electrobiofuels,efficiency-tot,0.6249,per unit,Stoichiometric calculation,,,, electrolysis,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0,, electrolysis,efficiency,0.6763,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0,, electrolysis,efficiency-heat,0.1571,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0,, @@ -4368,14 +4366,14 @@ methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 201 methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0,, methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker,,, methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ",,, -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0,, +methanolisation,FOM,3.0952,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Fixed O&M,2020.0,, methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,,,, methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",,,, methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",,,, methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH,,, methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH,,, -methanolisation,investment,565735.7731,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0,, -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0,, +methanolisation,investment,911.7588,EUR/kW_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Specific investment,2020.0,, +methanolisation,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Technical lifetime,2020.0,, micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0,, micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0,, micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0,, diff --git a/outputs/US/costs_2050.csv b/outputs/US/costs_2050.csv index bdccf810..87f062c2 100644 --- a/outputs/US/costs_2050.csv +++ b/outputs/US/costs_2050.csv @@ -4187,12 +4187,10 @@ electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost a electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0,, electrobiofuels,C in fuel,0.9316,per unit,Stoichiometric calculation,,,, electrobiofuels,FOM,3.0,%/year,combination of BtL and electrofuels,,2015.0,, -electrobiofuels,VOM,2.5054,EUR/MWh_th,combination of BtL and electrofuels,,2022.0,, electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,,,, electrobiofuels,efficiency-biomass,1.3283,per unit,Stoichiometric calculation,,,, electrobiofuels,efficiency-hydrogen,1.1364,per unit,Stoichiometric calculation,,,, -electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation,,,, -electrobiofuels,investment,1046932.4068,EUR/kW_th,combination of BtL and electrofuels,,2022.0,, +electrobiofuels,efficiency-tot,0.6353,per unit,Stoichiometric calculation,,,, electrolysis,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0,, electrolysis,efficiency,0.6994,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0,, electrolysis,efficiency-heat,0.1294,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0,, @@ -4368,14 +4366,14 @@ methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 201 methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0,, methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker,,, methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ",,, -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0,, +methanolisation,FOM,3.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Fixed O&M,2020.0,, methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,,,, methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",,,, methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",,,, methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH,,, methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH,,, -methanolisation,investment,519738.882,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0,, -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0,, +methanolisation,investment,868.3417,EUR/kW_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Specific investment,2020.0,, +methanolisation,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Technical lifetime,2020.0,, micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0,, micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0,, micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0,, diff --git a/outputs/costs_2020.csv b/outputs/costs_2020.csv index 4c27f849..aa176019 100644 --- a/outputs/costs_2020.csv +++ b/outputs/costs_2020.csv @@ -229,15 +229,15 @@ FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC tran FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,FOM,6.4381,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Fixed O&M,2020.0 Fischer-Tropsch,VOM,5.636,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.36,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,efficiency,0.65,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","102 Hydrogen to Jet: FT Liquids Output,",2020.0 Fischer-Tropsch,electricity-input,0.008,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", Fischer-Tropsch,hydrogen-input,1.531,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,819108.478,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Fischer-Tropsch,investment,2233.14,EUR/kW_FT/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Specific investment,2020.0 +Fischer-Tropsch,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Technical lifetime,2020.0 Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 @@ -972,12 +972,10 @@ electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost a electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9245,per unit,Stoichiometric calculation,, electrobiofuels,FOM,2.4,%/year,combination of BtL and electrofuels,,2015.0 -electrobiofuels,VOM,5.153,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3183,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.1766,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6217,per unit,Stoichiometric calculation,, -electrobiofuels,investment,559887.2932,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,efficiency-hydrogen,0.9572,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.5545,per unit,Stoichiometric calculation,, electrolysis,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 electrolysis,efficiency,0.5773,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 electrolysis,efficiency-heat,0.2762,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 @@ -1108,14 +1106,14 @@ methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 201 methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,FOM,2.9032,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Fixed O&M,2020.0 methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, -methanolisation,investment,819108.478,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +methanolisation,investment,1345.9296,EUR/kW_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Specific investment,2020.0 +methanolisation,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Technical lifetime,2020.0 micro CHP,FOM,6.6667,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 micro CHP,efficiency-heat,0.599,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 diff --git a/outputs/costs_2025.csv b/outputs/costs_2025.csv index 506f3c3a..1c9361ac 100644 --- a/outputs/costs_2025.csv +++ b/outputs/costs_2025.csv @@ -229,15 +229,15 @@ FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC tran FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,FOM,6.4,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Fixed O&M,2020.0 Fischer-Tropsch,VOM,5.0512,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.343,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,efficiency,0.675,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","102 Hydrogen to Jet: FT Liquids Output,",2020.0 Fischer-Tropsch,electricity-input,0.0075,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", Fischer-Tropsch,hydrogen-input,1.476,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,761417.4621,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Fischer-Tropsch,investment,1967.29,EUR/kW_FT/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Specific investment,2020.0 +Fischer-Tropsch,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Technical lifetime,2020.0 Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 @@ -972,12 +972,10 @@ electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost a electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9257,per unit,Stoichiometric calculation,, electrobiofuels,FOM,2.5263,%/year,combination of BtL and electrofuels,,2015.0 -electrobiofuels,VOM,4.6849,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.32,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.1951,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6272,per unit,Stoichiometric calculation,, -electrobiofuels,investment,512440.2631,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,efficiency-hydrogen,1.0096,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.5721,per unit,Stoichiometric calculation,, electrolysis,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 electrolysis,efficiency,0.5874,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 electrolysis,efficiency-heat,0.264,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 @@ -1108,14 +1106,14 @@ methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 201 methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,FOM,2.9032,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Fixed O&M,2020.0 methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, -methanolisation,investment,761417.4621,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +methanolisation,investment,1345.9296,EUR/kW_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Specific investment,2020.0 +methanolisation,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Technical lifetime,2020.0 micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 micro CHP,efficiency-heat,0.604,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 diff --git a/outputs/costs_2030.csv b/outputs/costs_2030.csv index 8573f6a7..bfbc186b 100644 --- a/outputs/costs_2030.csv +++ b/outputs/costs_2030.csv @@ -229,15 +229,15 @@ FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC tran FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,FOM,6.35,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Fixed O&M,2020.0 Fischer-Tropsch,VOM,4.4663,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.326,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,efficiency,0.7,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","102 Hydrogen to Jet: FT Liquids Output,",2020.0 Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", Fischer-Tropsch,hydrogen-input,1.421,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,703726.4462,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Fischer-Tropsch,investment,1701.44,EUR/kW_FT/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Specific investment,2020.0 +Fischer-Tropsch,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Technical lifetime,2020.0 Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 @@ -972,12 +972,10 @@ electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost a electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9269,per unit,Stoichiometric calculation,, electrobiofuels,FOM,2.6667,%/year,combination of BtL and electrofuels,,2015.0 -electrobiofuels,VOM,4.2296,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3217,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.2142,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6328,per unit,Stoichiometric calculation,, -electrobiofuels,investment,466206.9921,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,efficiency-hydrogen,1.0637,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.5894,per unit,Stoichiometric calculation,, electrolysis,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 electrolysis,efficiency,0.6217,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 electrolysis,efficiency-heat,0.2228,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 @@ -1108,14 +1106,14 @@ methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 201 methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,FOM,2.8,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Fixed O&M,2020.0 methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, -methanolisation,investment,703726.4462,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +methanolisation,investment,1085.4271,EUR/kW_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Specific investment,2020.0 +methanolisation,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Technical lifetime,2020.0 micro CHP,FOM,6.1111,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 diff --git a/outputs/costs_2035.csv b/outputs/costs_2035.csv index ec76b771..52aab3c6 100644 --- a/outputs/costs_2035.csv +++ b/outputs/costs_2035.csv @@ -229,15 +229,15 @@ FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC tran FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,FOM,6.2815,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Fixed O&M,2020.0 Fischer-Tropsch,VOM,3.9346,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.3135,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,efficiency,0.715,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","102 Hydrogen to Jet: FT Liquids Output,",2020.0 Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", Fischer-Tropsch,hydrogen-input,1.392,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,657729.5552,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Fischer-Tropsch,investment,1435.59,EUR/kW_FT/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Specific investment,2020.0 +Fischer-Tropsch,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Technical lifetime,2020.0 Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 @@ -972,12 +972,10 @@ electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost a electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9281,per unit,Stoichiometric calculation,, electrobiofuels,FOM,2.7484,%/year,combination of BtL and electrofuels,,2015.0 -electrobiofuels,VOM,3.8235,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3233,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.2339,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6385,per unit,Stoichiometric calculation,, -electrobiofuels,investment,428759.8057,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,efficiency-hydrogen,1.1042,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6019,per unit,Stoichiometric calculation,, electrolysis,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 electrolysis,efficiency,0.6374,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 electrolysis,efficiency-heat,0.2039,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 @@ -1108,14 +1106,14 @@ methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 201 methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,FOM,2.9787,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Fixed O&M,2020.0 methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, -methanolisation,investment,657729.5552,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +methanolisation,investment,1020.3015,EUR/kW_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Specific investment,2020.0 +methanolisation,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Technical lifetime,2020.0 micro CHP,FOM,6.1765,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 diff --git a/outputs/costs_2040.csv b/outputs/costs_2040.csv index 3396d5ab..02b037e5 100644 --- a/outputs/costs_2040.csv +++ b/outputs/costs_2040.csv @@ -229,15 +229,15 @@ FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC tran FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,FOM,6.1818,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Fixed O&M,2020.0 Fischer-Tropsch,VOM,3.4029,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.301,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,efficiency,0.73,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","102 Hydrogen to Jet: FT Liquids Output,",2020.0 Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", Fischer-Tropsch,hydrogen-input,1.363,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,611732.6641,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Fischer-Tropsch,investment,1169.74,EUR/kW_FT/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Specific investment,2020.0 +Fischer-Tropsch,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Technical lifetime,2020.0 Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 @@ -972,12 +972,10 @@ electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost a electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9292,per unit,Stoichiometric calculation,, electrobiofuels,FOM,2.8364,%/year,combination of BtL and electrofuels,,2015.0 -electrobiofuels,VOM,3.429,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.325,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.2543,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6443,per unit,Stoichiometric calculation,, -electrobiofuels,investment,392280.346,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,efficiency-hydrogen,1.146,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6145,per unit,Stoichiometric calculation,, electrolysis,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 electrolysis,efficiency,0.6532,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 electrolysis,efficiency-heat,0.1849,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 @@ -1108,14 +1106,14 @@ methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 201 methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,FOM,3.1818,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Fixed O&M,2020.0 methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, -methanolisation,investment,611732.6641,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +methanolisation,investment,955.1759,EUR/kW_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Specific investment,2020.0 +methanolisation,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Technical lifetime,2020.0 micro CHP,FOM,6.25,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 diff --git a/outputs/costs_2045.csv b/outputs/costs_2045.csv index 18501a57..44d63a97 100644 --- a/outputs/costs_2045.csv +++ b/outputs/costs_2045.csv @@ -229,15 +229,15 @@ FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC tran FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,FOM,6.36,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Fixed O&M,2020.0 Fischer-Tropsch,VOM,2.818,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.2885,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,efficiency,0.74,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","102 Hydrogen to Jet: FT Liquids Output,",2020.0 Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", Fischer-Tropsch,hydrogen-input,1.345,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,565735.7731,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Fischer-Tropsch,investment,1063.4,EUR/kW_FT/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Specific investment,2020.0 +Fischer-Tropsch,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Technical lifetime,2020.0 Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 @@ -972,12 +972,10 @@ electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost a electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9304,per unit,Stoichiometric calculation,, electrobiofuels,FOM,2.9164,%/year,combination of BtL and electrofuels,,2015.0 -electrobiofuels,VOM,3.0103,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3267,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.2754,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6503,per unit,Stoichiometric calculation,, -electrobiofuels,investment,356768.6132,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,efficiency-hydrogen,1.1812,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6249,per unit,Stoichiometric calculation,, electrolysis,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 electrolysis,efficiency,0.6763,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 electrolysis,efficiency-heat,0.1571,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 @@ -1108,14 +1106,14 @@ methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 201 methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,FOM,3.0952,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Fixed O&M,2020.0 methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, -methanolisation,investment,565735.7731,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +methanolisation,investment,911.7588,EUR/kW_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Specific investment,2020.0 +methanolisation,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Technical lifetime,2020.0 micro CHP,FOM,6.3333,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 diff --git a/outputs/costs_2050.csv b/outputs/costs_2050.csv index a1be69d7..14039956 100644 --- a/outputs/costs_2050.csv +++ b/outputs/costs_2050.csv @@ -229,15 +229,15 @@ FT fuel transport ship,FOM,5.0,%/year,"Assume comparable tanker as for LOHC tran FT fuel transport ship,capacity,75000.0,t_FTfuel,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,investment,35000000.0,EUR,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 FT fuel transport ship,lifetime,15.0,years,"Assume comparable tanker as for LOHC transport above, c.f. Runge et al 2020, Table 10, https://papers.ssrn.com/abstract=3623514 .",,2020.0 -Fischer-Tropsch,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +Fischer-Tropsch,FOM,6.5778,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Fixed O&M,2020.0 Fischer-Tropsch,VOM,2.2331,EUR/MWh_FT,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Variable O&M,2020.0 Fischer-Tropsch,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, Fischer-Tropsch,carbondioxide-input,0.276,t_CO2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","Input per 1t FT liquid fuels output, carbon efficiency increases with years (4.3, 3.9, 3.6, 3.3 t_CO2/t_FT from 2020-2050 with LHV 11.95 MWh_th/t_FT).", -Fischer-Tropsch,efficiency,0.799,per unit,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.2.",,2017.0 +Fischer-Tropsch,efficiency,0.75,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx","102 Hydrogen to Jet: FT Liquids Output,",2020.0 Fischer-Tropsch,electricity-input,0.007,MWh_el/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.005 MWh_el input per FT output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", Fischer-Tropsch,hydrogen-input,1.327,MWh_H2/MWh_FT,"DEA (2022): Technology Data for Renewable Fuels (https://ens.dk/en/our-services/projections-and-models/technology-data/technology-data-renewable-fuels), Hydrogen to Jet Fuel, Table 10 / pg. 267.","0.995 MWh_H2 per output, output increasing from 2020 to 2050 (0.65, 0.7, 0.73, 0.75 MWh liquid FT output).", -Fischer-Tropsch,investment,519738.882,EUR/MW_FT,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -Fischer-Tropsch,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +Fischer-Tropsch,investment,957.06,EUR/kW_FT/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Specific investment,2020.0 +Fischer-Tropsch,lifetime,25.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",102 Hydrogen to Jet: Technical lifetime,2020.0 Gasnetz,FOM,2.5,%,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,investment,28.0,EUR/kWGas,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 Gasnetz,lifetime,30.0,years,"WEGE ZU EINEM KLIMANEUTRALEN ENERGIESYSEM, Anhang zur Studie, Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg",Gasnetz,2020.0 @@ -972,12 +972,10 @@ electricity grid connection,investment,148.151,EUR/kW,DEA, from old pypsa cost a electricity grid connection,lifetime,40.0,years,TODO, from old pypsa cost assumptions,2015.0 electrobiofuels,C in fuel,0.9316,per unit,Stoichiometric calculation,, electrobiofuels,FOM,3.0,%/year,combination of BtL and electrofuels,,2015.0 -electrobiofuels,VOM,2.6044,EUR/MWh_th,combination of BtL and electrofuels,,2017.0 electrobiofuels,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, electrobiofuels,efficiency-biomass,1.3283,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-hydrogen,1.2971,per unit,Stoichiometric calculation,, -electrobiofuels,efficiency-tot,0.6563,per unit,Stoichiometric calculation,, -electrobiofuels,investment,322224.6071,EUR/kW_th,combination of BtL and electrofuels,,2017.0 +electrobiofuels,efficiency-hydrogen,1.2176,per unit,Stoichiometric calculation,, +electrobiofuels,efficiency-tot,0.6353,per unit,Stoichiometric calculation,, electrolysis,FOM,4.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Fixed O&M ,2020.0 electrolysis,efficiency,0.6994,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: Hydrogen Output,2020.0 electrolysis,efficiency-heat,0.1294,per unit,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",86 AEC 100 MW: - hereof recoverable for district heating,2020.0 @@ -1108,14 +1106,14 @@ methanol-to-olefins/aromatics,electricity-input,1.3889,MWh_el/t_HVC,"DECHEMA 201 methanol-to-olefins/aromatics,investment,2781006.4359,EUR/(t_HVC/h),"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Table 35",Assuming CAPEX of 1200 €/t actually given in €/(t/a).,2015.0 methanol-to-olefins/aromatics,lifetime,30.0,years,Guesstimate,same as steam cracker, methanol-to-olefins/aromatics,methanol-input,18.03,MWh_MeOH/t_HVC,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf), Sections 4.5 (for ethylene and propylene) and 4.6 (for BTX)","Weighted average: 2.83 t_MeOH/t_ethylene+propylene for 21.7 Mt of ethylene and 17 Mt of propylene, 4.2 t_MeOH/t_BTX for 15.7 Mt of BTX. Assuming 5.54 MWh_MeOH/t_MeOH. ", -methanolisation,FOM,3.0,%/year,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), section 6.3.2.1.",,2017.0 +methanolisation,FOM,3.0,%/year,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Fixed O&M,2020.0 methanolisation,capture rate,0.9,per unit,Assumption based on doi:10.1016/j.biombioe.2015.01.006,, methanolisation,carbondioxide-input,0.248,t_CO2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 66.",, methanolisation,electricity-input,0.271,MWh_e/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",, methanolisation,heat-output,0.1,MWh_th/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 65.",steam generation of 2 GJ/t_MeOH, methanolisation,hydrogen-input,1.138,MWh_H2/MWh_MeOH,"DECHEMA 2017: DECHEMA: Low carbon energy and feedstock for the European chemical industry (https://dechema.de/dechema_media/Downloads/Positionspapiere/Technology_study_Low_carbon_energy_and_feedstock_for_the_European_chemical_industry.pdf) , pg. 64.",189 kg_H2 per t_MeOH, -methanolisation,investment,519738.882,EUR/MW_MeOH,"Agora Energiewende (2018): The Future Cost of Electricity-Based Synthetic Fuels (https://www.agora-energiewende.de/en/publications/the-future-cost-of-electricity-based-synthetic-fuels-1/), table 8: “Reference scenario”.","Well developed technology, no significant learning expected.",2017.0 -methanolisation,lifetime,20.0,years,"Danish Energy Agency, Technology Data for Renewable Fuels (04/2022), Data sheet “Methanol to Power”.",,2017.0 +methanolisation,investment,868.3417,EUR/kW_MeOH,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Specific investment,2020.0 +methanolisation,lifetime,30.0,years,"Danish Energy Agency, inputs/data_sheets_for_renewable_fuels.xlsx",98 Methanol from hydrogen: Technical lifetime,2020.0 micro CHP,FOM,6.4286,%/year,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx",219 LT-PEMFC mCHP - natural gas: Fixed O&M,2015.0 micro CHP,efficiency,0.351,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Electric efficiency, annual average, net",2015.0 micro CHP,efficiency-heat,0.609,per unit,"Danish Energy Agency, inputs/technologydatafor_heating_installations_marts_2018.xlsx","219 LT-PEMFC mCHP - natural gas: Heat efficiency, annual average, net",2015.0 diff --git a/scripts/compile_cost_assumptions.py b/scripts/compile_cost_assumptions.py index 4423bd88..cec8fb6f 100644 --- a/scripts/compile_cost_assumptions.py +++ b/scripts/compile_cost_assumptions.py @@ -772,7 +772,7 @@ def get_data_DEA( "Eletricity input", "Heat out", "capture rate", - "FT Liquids Output, MWh/MWh Total Input", + "FT Liquids Output, [MWh/MWh Total Input]", " - hereof recoverable for district heating [%-points of heat loss]", " - hereof recoverable for district heating (%-points of heat loss)", "Bio SNG Output [% of fuel input]", @@ -869,6 +869,7 @@ def get_data_DEA( if tech_name == "methanolisation": df.drop(df.loc[df.index.str.contains("1,000 t Methanol")].index, inplace=True) + df.drop(df.loc[df.index.str.contains("TPD")].index, inplace=True) if tech_name == "Fischer-Tropsch": df.drop(df.loc[df.index.str.contains("l FT Liquids")].index, inplace=True) @@ -964,6 +965,9 @@ def get_data_DEA( if "solid biomass power" in tech_name: df.index = df.index.str.replace("EUR/MWeh", "EUR/MWh") + if "methanolisation" in tech_name: + df.index = df.index.str.replace("[MW-methanol/year]", "MW_MeOH/year") + if "biochar pyrolysis" in tech_name: df = biochar_pyrolysis_harmonise_dea(df) @@ -1573,6 +1577,9 @@ def clean_up_units( technology_dataframe.unit = technology_dataframe.unit.str.replace( "MW Methanol", "MW_MeOH" ) + technology_dataframe.unit = technology_dataframe.unit.str.replace( + "[MW_MeOH/year]", "MW_MeOH/year" + ) technology_dataframe.unit = technology_dataframe.unit.str.replace("MW output", "MW") technology_dataframe.unit = technology_dataframe.unit.str.replace( "MW/year FT Liquids/year", "MW_FT/year" @@ -1592,6 +1599,9 @@ def clean_up_units( technology_dataframe.unit = technology_dataframe.unit.str.replace( "MWh SNG", "MWh_CH4" ) + technology_dataframe.unit = technology_dataframe.unit.str.replace( + "MW-methanol", "MW_MeOH" + ) technology_dataframe.unit = technology_dataframe.unit.str.replace( "MW SNG", "MW_CH4" ) @@ -1689,12 +1699,6 @@ def clean_up_units( } ) - if "methanolisation" in technology_dataframe.index: - technology_dataframe = technology_dataframe.sort_index() - technology_dataframe.loc[("methanolisation", "Variable O&M"), "unit"] = ( - "EUR/MWh_MeOH" - ) - technology_dataframe.unit = technology_dataframe.unit.str.replace(r"\)", "") return technology_dataframe @@ -1915,7 +1919,6 @@ def order_data(years: list, technology_dataframe: pd.DataFrame) -> pd.DataFrame: | (df.unit == "EUR/MWh/year") | (df.unit == "EUR/MW_e, 2020") | (df.unit == "EUR/MW input") - | (df.unit == "EUR/MW-methanol") | (df.unit == "EUR/t_N2/h") # air separation unit | (df.unit == "EUR/MW_biochar") ) @@ -1968,6 +1971,10 @@ def order_data(years: list, technology_dataframe: pd.DataFrame) -> pd.DataFrame: # For current data, the FOM values for central water pit storage are too high by a factor of 1000. # See issue: https://github.com/PyPSA/technology-data/issues/203 fixed[years] /= 1000 # in €/MWhCapacity/year + if tech_name == "Fischer-Tropsch": + fixed[years] *= ( + 8000 # conversion from €/MWh to €/MW/year, assuming 8000 full load hours + ) if len(fixed) == 1: fixed["parameter"] = "fixed" clean_df[tech_name] = pd.concat([clean_df[tech_name], fixed]) @@ -2054,7 +2061,7 @@ def order_data(years: list, technology_dataframe: pd.DataFrame) -> pd.DataFrame: (df.index.str.contains("efficiency")) | (df.index.str.contains("Hydrogen output, at LHV")) | (df.index.str.contains("Hydrogen Output")) - | (df.index.str.contains("FT Liquids Output, MWh/MWh Total Input")) + | (df.index.str.contains("FT Liquids Output")) | (df.index.str.contains("Methanol Output")) | (df.index.str.contains("District heat Output")) | (df.index.str.contains("Electricity Output")) @@ -2074,6 +2081,7 @@ def order_data(years: list, technology_dataframe: pd.DataFrame) -> pd.DataFrame: | (df.unit == "MWh_th/MWh_th") | (df.unit == "MWh/MWh Total Input") | df.unit.str.contains("MWh_FT/MWh_H2") + | df.unit.str.contains("MWh/MWh Total Input") | df.unit.str.contains("MWh_biochar/MWh_feedstock") | df.unit.str.contains("ton biochar/MWh_feedstock") | df.unit.str.contains("MWh_CH4/MWh_H2") @@ -3107,17 +3115,6 @@ def carbon_flow( cost_dataframe.loc[("electrobiofuels", "efficiency-tot"), "source"] = ( "Stoichiometric calculation" ) - - inv_cost = ( - btl_cost[year_to_use] - + cost_dataframe.loc[("Fischer-Tropsch", "investment"), "value"] - * efuel_scale_factor - ) - VOM = ( - cost_dataframe.loc[("BtL", "VOM"), "value"] - + cost_dataframe.loc[("Fischer-Tropsch", "VOM"), "value"] - * efuel_scale_factor - ) FOM = cost_dataframe.loc[("BtL", "FOM"), "value"] medium_out = "oil" currency_year = cost_dataframe.loc[