@@ -365,13 +365,13 @@ def tz_convert(self, tz) -> Self:
365365 DatetimeIndex(['2014-08-01 09:00:00+02:00',
366366 '2014-08-01 10:00:00+02:00',
367367 '2014-08-01 11:00:00+02:00'],
368- dtype='datetime64[ns , Europe/Berlin]', freq='h')
368+ dtype='datetime64[us , Europe/Berlin]', freq='h')
369369
370370 >>> dti.tz_convert("US/Central")
371371 DatetimeIndex(['2014-08-01 02:00:00-05:00',
372372 '2014-08-01 03:00:00-05:00',
373373 '2014-08-01 04:00:00-05:00'],
374- dtype='datetime64[ns , US/Central]', freq='h')
374+ dtype='datetime64[us , US/Central]', freq='h')
375375
376376 With the ``tz=None``, we can remove the timezone (after converting
377377 to UTC if necessary):
@@ -384,13 +384,13 @@ def tz_convert(self, tz) -> Self:
384384 DatetimeIndex(['2014-08-01 09:00:00+02:00',
385385 '2014-08-01 10:00:00+02:00',
386386 '2014-08-01 11:00:00+02:00'],
387- dtype='datetime64[ns , Europe/Berlin]', freq='h')
387+ dtype='datetime64[us , Europe/Berlin]', freq='h')
388388
389389 >>> dti.tz_convert(None)
390390 DatetimeIndex(['2014-08-01 07:00:00',
391391 '2014-08-01 08:00:00',
392392 '2014-08-01 09:00:00'],
393- dtype='datetime64[ns ]', freq='h')
393+ dtype='datetime64[us ]', freq='h')
394394 """ # noqa: E501
395395 arr = self ._data .tz_convert (tz )
396396 return type (self )._simple_new (arr , name = self .name , refs = self ._references )
@@ -468,7 +468,7 @@ def tz_localize(
468468 >>> tz_naive
469469 DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00',
470470 '2018-03-03 09:00:00'],
471- dtype='datetime64[ns ]', freq='D')
471+ dtype='datetime64[us ]', freq='D')
472472
473473 Localize DatetimeIndex in US/Eastern time zone:
474474
@@ -477,15 +477,15 @@ def tz_localize(
477477 DatetimeIndex(['2018-03-01 09:00:00-05:00',
478478 '2018-03-02 09:00:00-05:00',
479479 '2018-03-03 09:00:00-05:00'],
480- dtype='datetime64[ns , US/Eastern]', freq=None)
480+ dtype='datetime64[us , US/Eastern]', freq=None)
481481
482482 With the ``tz=None``, we can remove the time zone information
483483 while keeping the local time (not converted to UTC):
484484
485485 >>> tz_aware.tz_localize(None)
486486 DatetimeIndex(['2018-03-01 09:00:00', '2018-03-02 09:00:00',
487487 '2018-03-03 09:00:00'],
488- dtype='datetime64[ns ]', freq=None)
488+ dtype='datetime64[us ]', freq=None)
489489
490490 Be careful with DST changes. When there is sequential data, pandas can
491491 infer the DST time:
@@ -505,7 +505,7 @@ def tz_localize(
505505 4 2018-10-28 02:30:00+01:00
506506 5 2018-10-28 03:00:00+01:00
507507 6 2018-10-28 03:30:00+01:00
508- dtype: datetime64[s , CET]
508+ dtype: datetime64[us , CET]
509509
510510 In some cases, inferring the DST is impossible. In such cases, you can
511511 pass an ndarray to the ambiguous parameter to set the DST explicitly
@@ -517,7 +517,7 @@ def tz_localize(
517517 0 2018-10-28 01:20:00+02:00
518518 1 2018-10-28 02:36:00+02:00
519519 2 2018-10-28 03:46:00+01:00
520- dtype: datetime64[s , CET]
520+ dtype: datetime64[us , CET]
521521
522522 If the DST transition causes nonexistent times, you can shift these
523523 dates forward or backwards with a timedelta object or `'shift_forward'`
0 commit comments