Skip to content

Commit 09fa6df

Browse files
committed
DOC: Fix line length issues in base.py docstrings
1 parent 30151cd commit 09fa6df

File tree

1 file changed

+13
-6
lines changed

1 file changed

+13
-6
lines changed

pandas/core/base.py

Lines changed: 13 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1330,7 +1330,9 @@ def factorize(
13301330
``pd.factorize(values)``. The results are identical for methods like
13311331
:meth:`Series.factorize`.
13321332
1333-
>>> codes, uniques = pd.factorize(np.array(['b', 'b', 'a', 'c', 'b'], dtype="O"))
1333+
>>> codes, uniques = pd.factorize(
1334+
... np.array(['b', 'b', 'a', 'c', 'b'], dtype="O")
1335+
... )
13341336
>>> codes
13351337
array([0, 0, 1, 2, 0])
13361338
>>> uniques
@@ -1339,8 +1341,9 @@ def factorize(
13391341
With ``sort=True``, the `uniques` will be sorted, and `codes` will be
13401342
shuffled so that the relationship is the maintained.
13411343
1342-
>>> codes, uniques = pd.factorize(np.array(['b', 'b', 'a', 'c', 'b'], dtype="O"),
1343-
... sort=True)
1344+
>>> codes, uniques = pd.factorize(
1345+
... np.array(['b', 'b', 'a', 'c', 'b'], dtype="O"), sort=True
1346+
... )
13441347
>>> codes
13451348
array([1, 1, 0, 2, 1])
13461349
>>> uniques
@@ -1350,7 +1353,9 @@ def factorize(
13501353
the `codes` with the sentinel value ``-1`` and missing values are not
13511354
included in `uniques`.
13521355
1353-
>>> codes, uniques = pd.factorize(np.array(['b', None, 'a', 'c', 'b'], dtype="O"))
1356+
>>> codes, uniques = pd.factorize(
1357+
... np.array(['b', None, 'a', 'c', 'b'], dtype="O")
1358+
... )
13541359
>>> codes
13551360
array([ 0, -1, 1, 2, 0])
13561361
>>> uniques
@@ -1384,8 +1389,10 @@ def factorize(
13841389
If NaN is in the values, and we want to include NaN in the uniques of the
13851390
values, it can be achieved by setting ``use_na_sentinel=False``.
13861391
1387-
>>> codes, uniques = pd.factorize(np.array(['b', None, 'a', 'c', 'b'], dtype="O"),
1388-
... use_na_sentinel=False)
1392+
>>> codes, uniques = pd.factorize(
1393+
... np.array(['b', None, 'a', 'c', 'b'], dtype="O"),
1394+
... use_na_sentinel=False,
1395+
... )
13891396
>>> codes
13901397
array([0, 1, 2, 3, 0])
13911398
>>> uniques

0 commit comments

Comments
 (0)