Skip to content

Commit a56a87d

Browse files
committed
Revert old change, ensure accounts for .unit
1 parent 85fcf10 commit a56a87d

File tree

3 files changed

+11
-3
lines changed

3 files changed

+11
-3
lines changed

pandas/core/arrays/_mixins.py

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -512,7 +512,9 @@ def _quantile(
512512
else:
513513
# e.g. test_quantile_empty we are empty integer dtype and res_values
514514
# has floating dtype
515-
return type(self)._from_sequence(res_values) # type: ignore[call-arg]
515+
# TODO: technically __init__ isn't defined here.
516+
# Should we raise NotImplementedError and handle this on NumpyEA?
517+
return type(self)(res_values) # type: ignore[call-arg]
516518

517519
# ------------------------------------------------------------------------
518520
# numpy-like methods

pandas/core/arrays/datetimes.py

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -226,13 +226,16 @@ class DatetimeArray(dtl.TimelikeOps, dtl.DatelikeOps):
226226
"""
227227

228228
_typ = "datetimearray"
229-
_internal_fill_value = np.datetime64("NaT", "ns")
230229
_recognized_scalars = (datetime, np.datetime64)
231230
_is_recognized_dtype: Callable[[DtypeObj], bool] = lambda x: lib.is_np_dtype(
232231
x, "M"
233232
) or isinstance(x, DatetimeTZDtype)
234233
_infer_matches = ("datetime", "datetime64", "date")
235234

235+
@property
236+
def _internal_fill_value(self) -> np.datetime64:
237+
return np.datetime64("NaT", self.unit)
238+
236239
@property
237240
def _scalar_type(self) -> type[Timestamp]:
238241
return Timestamp

pandas/core/arrays/timedeltas.py

Lines changed: 4 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -154,11 +154,14 @@ class TimedeltaArray(dtl.TimelikeOps):
154154
"""
155155

156156
_typ = "timedeltaarray"
157-
_internal_fill_value = np.timedelta64("NaT", "ns")
158157
_recognized_scalars = (timedelta, np.timedelta64, Tick)
159158
_is_recognized_dtype: Callable[[DtypeObj], bool] = lambda x: lib.is_np_dtype(x, "m")
160159
_infer_matches = ("timedelta", "timedelta64")
161160

161+
@property
162+
def _internal_fill_value(self) -> np.timedelta64:
163+
return np.timedelta64("NaT", self.unit)
164+
162165
@property
163166
def _scalar_type(self) -> type[Timedelta]:
164167
return Timedelta

0 commit comments

Comments
 (0)