Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
19 commits
Select commit Hold shift + click to select a range
5205471
Add constraints and adjust dual simplex to warm start from the curren…
chris-maes Nov 17, 2025
0584337
Style fixes
chris-maes Nov 17, 2025
74fff99
Remove debugging
chris-maes Nov 17, 2025
099a1df
Merge remote-tracking branch 'cuopt-nvidia/main' into cuts
chris-maes Nov 17, 2025
1882892
Fix issues in adding cuts. Add gomory cuts. Temporarily disable MIP h…
chris-maes Nov 25, 2025
96ed386
Fix unit test
chris-maes Nov 25, 2025
6ff7952
Fix issue when computing nonzeros in C_B
chris-maes Nov 25, 2025
20b5777
Check solution values at end of unit test
chris-maes Nov 25, 2025
ca571a0
Enable c-MIR cuts
chris-maes Nov 25, 2025
9dea7ce
Add integer infeasibility info. Remove inactive cuts. Add mip_cut_pas…
chris-maes Nov 26, 2025
42af00c
Remove small coefficients from cut
chris-maes Dec 2, 2025
3c36836
Separate out cuts logic into several classes
chris-maes Dec 18, 2025
369e755
Only perform cuts on the original variables. Substitute out slack var…
chris-maes Dec 19, 2025
b48e05b
Knapsack cuts from before the winter break
chris-maes Jan 5, 2026
78cb1dc
Turn off sub-mip. Fix edge norms which was leading to crazy depth on …
chris-maes Jan 6, 2026
1e17743
Check for reduced cost variable fixings
chris-maes Jan 6, 2026
ec883a0
Merge remote-tracking branch 'cuopt-nvidia/main' into cuts
chris-maes Jan 6, 2026
3744548
Also try to improve continuous variables with reduced cost strengthening
chris-maes Jan 6, 2026
f8e6fbe
Fix performance bug in set_quadratic_objective_matrix
chris-maes Jan 7, 2026
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions cpp/include/cuopt/linear_programming/constants.h
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,7 @@
#define CUOPT_MIP_HEURISTICS_ONLY "mip_heuristics_only"
#define CUOPT_MIP_SCALING "mip_scaling"
#define CUOPT_MIP_PRESOLVE "mip_presolve"
#define CUOPT_MIP_CUT_PASSES "mip_cut_passes"
#define CUOPT_SOLUTION_FILE "solution_file"
#define CUOPT_NUM_CPU_THREADS "num_cpu_threads"
#define CUOPT_NUM_GPUS "num_gpus"
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,7 @@ class mip_solver_settings_t {
f_t time_limit = std::numeric_limits<f_t>::infinity();
bool heuristics_only = false;
i_t num_cpu_threads = -1; // -1 means use default number of threads in branch and bound
i_t max_cut_passes = 10; // number of cut passes to make
i_t num_gpus = 1;
bool log_to_console = true;
std::string log_file;
Expand Down
3 changes: 2 additions & 1 deletion cpp/src/dual_simplex/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ set(DUAL_SIMPLEX_SRC_FILES
${CMAKE_CURRENT_SOURCE_DIR}/basis_updates.cpp
${CMAKE_CURRENT_SOURCE_DIR}/bound_flipping_ratio_test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/branch_and_bound.cpp
${CMAKE_CURRENT_SOURCE_DIR}/cuts.cpp
${CMAKE_CURRENT_SOURCE_DIR}/crossover.cpp
${CMAKE_CURRENT_SOURCE_DIR}/folding.cpp
${CMAKE_CURRENT_SOURCE_DIR}/initial_basis.cpp
Expand All @@ -34,7 +35,7 @@ set(DUAL_SIMPLEX_SRC_FILES
)

# Uncomment to enable debug info
#set_source_files_properties(${DUAL_SIMPLEX_SRC_FILES} DIRECTORY ${CMAKE_SOURCE_DIR} PROPERTIES COMPILE_OPTIONS "-g1")
set_source_files_properties(${DUAL_SIMPLEX_SRC_FILES} DIRECTORY ${CMAKE_SOURCE_DIR} PROPERTIES COMPILE_OPTIONS "-g1")

set(CUOPT_SRC_FILES ${CUOPT_SRC_FILES}
${DUAL_SIMPLEX_SRC_FILES} PARENT_SCOPE)
208 changes: 207 additions & 1 deletion cpp/src/dual_simplex/basis_updates.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1108,6 +1108,212 @@ i_t basis_update_t<i_t, f_t>::lower_triangular_multiply(const csc_matrix_t<i_t,
return new_nz;
}

// Start of middle product form: basis_update_mpf_t

template <typename i_t, typename f_t>
i_t basis_update_mpf_t<i_t, f_t>::append_cuts(const csr_matrix_t<i_t, f_t>& cuts_basic)
{
const i_t m = L0_.m;

// Solve for U^T W^T = C_B^T
// We do this one row at a time of C_B
csc_matrix_t<i_t, f_t> WT(m, cuts_basic.m, 0);

i_t WT_nz = 0;
for (i_t k = 0; k < cuts_basic.m; k++) {
sparse_vector_t<i_t, f_t> rhs(cuts_basic, k);
u_transpose_solve(rhs);
WT.col_start[k] = WT_nz;
for (i_t q = 0; q < rhs.i.size(); q++) {
WT.i.push_back(rhs.i[q]);
WT.x.push_back(rhs.x[q]);
WT_nz++;
}
}
WT.col_start[cuts_basic.m] = WT_nz;


#ifdef CHECK_W
{
for (i_t k = 0; k < cuts_basic.m; k++) {
std::vector<f_t> WT_col(m, 0.0);
WT.load_a_column(k, WT_col);
std::vector<f_t> CBT_col(m, 0.0);
matrix_transpose_vector_multiply(U0_, 1.0, WT_col, 0.0, CBT_col);
sparse_vector_t<i_t, f_t> CBT_col_sparse(cuts_basic, k);
std::vector<f_t> CBT_col_dense(m);
CBT_col_sparse.to_dense(CBT_col_dense);
for (i_t h = 0; h < m; h++) {
if (std::abs(CBT_col_dense[h] - CBT_col[h]) > 1e-6) {
printf("col %d CBT_col_dense[%d] = %e CBT_col[%d] = %e\n", k, h, CBT_col_dense[h], h, CBT_col[h]);
exit(1);
}
}
}
}
#endif

csc_matrix_t<i_t, f_t> V(cuts_basic.m, m, 0);
if (num_updates_ > 0) {
// W = V T_0 ... T_{num_updates_ - 1}
// or V = W T_{num_updates_ - 1}^{-1} ... T_0^{-1}
// or V^T = T_0^{-T} ... T_{num_updates_ - 1}^{-T} W^T
// We can compute V^T column by column so that we have
// V^T(:, h) = T_0^{-T} ... T_{num_updates_ - 1}^{-T} W^T(:, h)
// or
// V(h, :) = T_0^{-T} ... T_{num_updates_ - 1}^{-T} W^T(:, h)
// So we can form V row by row in CSR and then covert it to CSC
// for appending to L0

csr_matrix_t<i_t, f_t> V_row(cuts_basic.m, m, 0);
i_t V_nz = 0;
const f_t zero_tol = 1e-13;
for (i_t h = 0; h < cuts_basic.m; h++) {
sparse_vector_t rhs(WT, h);
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🔴 Critical

Add explicit template arguments to sparse_vector_t construction.

Line 1172 constructs sparse_vector_t without template parameters. The compiler cannot deduce i_t and f_t from the constructor arguments, causing a compilation error.

🔎 Apply this diff
-      sparse_vector_t rhs(WT, h);
+      sparse_vector_t<i_t, f_t> rhs(WT, h);
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
sparse_vector_t rhs(WT, h);
sparse_vector_t<i_t, f_t> rhs(WT, h);
🤖 Prompt for AI Agents
In @cpp/src/dual_simplex/basis_updates.cpp at line 1172, The constructor call
for sparse_vector_t lacks explicit template parameters so the compiler cannot
deduce i_t and f_t; change the declaration of rhs to use explicit template
arguments (e.g., sparse_vector_t<i_t,f_t> rhs(WT, h)) where i_t and f_t are the
concrete index/value types used elsewhere in the file, ensuring the types match
the rest of the basis update code that uses sparse_vector_t.

scatter_into_workspace(rhs);
i_t nz = rhs.i.size();
for (i_t k = num_updates_ - 1; k >= 0; --k) {
// T_k^{-T} = ( I - v u^T/(1 + u^T v))
// T_k^{-T} * b = b - v * (u^T * b) / (1 + u^T * v) = b - theta * v, theta = u^T b / mu

const i_t u_col = 2 * k;
const i_t v_col = 2 * k + 1;
const f_t mu = mu_values_[k];

// dot = u^T * b
f_t dot = dot_product(u_col, xi_workspace_, x_workspace_);
const f_t theta = dot / mu;
if (std::abs(theta) > zero_tol) {
add_sparse_column(S_, v_col, -theta, xi_workspace_, nz, x_workspace_);
}
}
gather_into_sparse_vector(nz, rhs);
V_row.row_start[h] = V_nz;
for (i_t q = 0; q < rhs.i.size(); q++) {
V_row.j.push_back(rhs.i[q]);
V_row.x.push_back(rhs.x[q]);
V_nz++;
}
}
Comment on lines +1172 to +1197
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🔴 Critical

Add template arguments to sparse_vector_t construction

@basis_update_mpf_t<i_t, f_t>::append_cuts won’t compile as written because sparse_vector_t is a class template—there’s no deduction guide for the (WT, h) constructor, so the compiler can’t infer i_t/f_t. Please instantiate the template explicitly.

-      sparse_vector_t rhs(WT, h);
+      sparse_vector_t<i_t, f_t> rhs(WT, h);
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
sparse_vector_t rhs(WT, h);
scatter_into_workspace(rhs);
i_t nz = rhs.i.size();
for (i_t k = num_updates_ - 1; k >= 0; --k) {
// T_k^{-T} = ( I - v u^T/(1 + u^T v))
// T_k^{-T} * b = b - v * (u^T * b) / (1 + u^T * v) = b - theta * v, theta = u^T b / mu
const i_t u_col = 2 * k;
const i_t v_col = 2 * k + 1;
const f_t mu = mu_values_[k];
// dot = u^T * b
f_t dot = dot_product(u_col, xi_workspace_, x_workspace_);
const f_t theta = dot / mu;
if (std::abs(theta) > zero_tol) {
add_sparse_column(S_, v_col, -theta, xi_workspace_, nz, x_workspace_);
}
}
gather_into_sparse_vector(nz, rhs);
V_row.row_start[h] = V_nz;
for (i_t q = 0; q < rhs.i.size(); q++) {
V_row.j.push_back(rhs.i[q]);
V_row.x.push_back(rhs.x[q]);
V_nz++;
}
}
sparse_vector_t<i_t, f_t> rhs(WT, h);
scatter_into_workspace(rhs);
i_t nz = rhs.i.size();
for (i_t k = num_updates_ - 1; k >= 0; --k) {
// T_k^{-T} = ( I - v u^T/(1 + u^T v))
// T_k^{-T} * b = b - v * (u^T * b) / (1 + u^T * v) = b - theta * v, theta = u^T b / mu
const i_t u_col = 2 * k;
const i_t v_col = 2 * k + 1;
const f_t mu = mu_values_[k];
// dot = u^T * b
f_t dot = dot_product(u_col, xi_workspace_, x_workspace_);
const f_t theta = dot / mu;
if (std::abs(theta) > zero_tol) {
add_sparse_column(S_, v_col, -theta, xi_workspace_, nz, x_workspace_);
}
}
gather_into_sparse_vector(nz, rhs);
V_row.row_start[h] = V_nz;
for (i_t q = 0; q < rhs.i.size(); q++) {
V_row.j.push_back(rhs.i[q]);
V_row.x.push_back(rhs.x[q]);
V_nz++;
}
}
🤖 Prompt for AI Agents
In cpp/src/dual_simplex/basis_updates.cpp around lines 1149 to 1174, the
construction of sparse_vector_t using sparse_vector_t(WT, h) fails because
template parameters i_t and f_t cannot be deduced; explicitly instantiate the
template when constructing the object (e.g. sparse_vector_t<i_t, f_t> rhs(WT,
h)) so the compiler knows the element/index types, leaving the rest of the code
unchanged.

V_row.row_start[cuts_basic.m] = V_nz;

V_row.to_compressed_col(V);


#ifdef CHECK_V
csc_matrix_t<i_t, f_t> CB_col(cuts_basic.m, m, 0);
cuts_basic.to_compressed_col(CB_col);
for (i_t k = 0; k < m; k++) {
std::vector<f_t> U_col(m, 0.0);
U0_.load_a_column(k, U_col);
for (i_t h = num_updates_ - 1; h >= 0; --h) {
// T_h = ( I + u_h v_h^T)
// T_h * x = x + u_h * v_h^T * x = x + theta * u_h
const i_t u_col = 2 * h;
const i_t v_col = 2 * h + 1;
f_t theta = dot_product(v_col, U_col);
const i_t col_start = S_.col_start[u_col];
const i_t col_end = S_.col_start[u_col + 1];
for (i_t p = col_start; p < col_end; ++p) {
const i_t i = S_.i[p];
U_col[i] += theta * S_.x[p];
}
}
std::vector<f_t> CB_column(cuts_basic.m, 0.0);
matrix_vector_multiply(V, 1.0, U_col, 0.0, CB_column);
std::vector<f_t> CB_col_dense(cuts_basic.m);
CB_col.load_a_column(k, CB_col_dense);
for (i_t l = 0; l < cuts_basic.m; l++) {
if (std::abs(CB_col_dense[l] - CB_column[l]) > 1e-6) {
printf("col %d CB_col_dense[%d] = %e CB_column[%d] = %e\n", k, l, CB_col_dense[l], l, CB_column[l]);
exit(1);
}
}
}
#endif
} else {
// W = V
WT.transpose(V);
}

// Extend u_i, v_i for i = 0, ..., num_updates_ - 1
S_.m += cuts_basic.m;

// Adjust L and U
// L = [ L0 0 ]
// [ V I ]

i_t V_nz = V.col_start[m];
i_t L_nz = L0_.col_start[m];
csc_matrix_t<i_t, f_t> new_L(m + cuts_basic.m, m + cuts_basic.m, L_nz + V_nz + cuts_basic.m);
i_t predicted_nz = L_nz + V_nz + cuts_basic.m;
L_nz = 0;
for (i_t j = 0; j < m; ++j) {
new_L.col_start[j] = L_nz;
const i_t col_start = L0_.col_start[j];
const i_t col_end = L0_.col_start[j + 1];
for (i_t p = col_start; p < col_end; ++p) {
new_L.i[L_nz] = L0_.i[p];
new_L.x[L_nz] = L0_.x[p];
L_nz++;
}
const i_t V_col_start = V.col_start[j];
const i_t V_col_end = V.col_start[j + 1];
for (i_t p = V_col_start; p < V_col_end; ++p) {
new_L.i[L_nz] = V.i[p] + m;
new_L.x[L_nz] = V.x[p];
L_nz++;
}
}
for (i_t j = m; j < m + cuts_basic.m; ++j) {
new_L.col_start[j] = L_nz;
new_L.i[L_nz] = j;
new_L.x[L_nz] = 1.0;
L_nz++;
}
new_L.col_start[m + cuts_basic.m] = L_nz;
if (L_nz != predicted_nz) {
printf("L_nz %d predicted_nz %d\n", L_nz, predicted_nz);
exit(1);
}
Comment on lines +1275 to +1278
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue | 🔴 Critical

Replace exit(1) with graceful error handling.

Lines 1276-1277 unconditionally call exit(1) when an internal consistency check fails (L_nz != predicted_nz). This terminates the application in production builds and prevents proper error recovery.

🔎 Apply this diff to propagate the error
   if (L_nz != predicted_nz) {
-    printf("L_nz %d predicted_nz %d\n", L_nz, predicted_nz);
-    exit(1);
+    settings.log.printf("Internal consistency error: L_nz %d != predicted_nz %d\n", L_nz, predicted_nz);
+    return -1;
   }

Based on coding guidelines: Verify error propagation from internal functions to user-facing APIs.

Committable suggestion skipped: line range outside the PR's diff.

🤖 Prompt for AI Agents
In @cpp/src/dual_simplex/basis_updates.cpp around lines 1275 - 1278, The
unconditional exit(1) in the consistency check comparing L_nz and predicted_nz
must be replaced with graceful error propagation: remove the printf/exit and
instead construct and propagate an error (e.g., throw a std::runtime_error with
a descriptive message including L_nz and predicted_nz, or return a failure
status/enum from the enclosing function) so callers can handle it; update the
enclosing function (the function in basis_updates.cpp that contains this check)
to propagate that error upward (adjust its return type or add exception
handling) and ensure callers translate it to a user-facing error/log rather than
terminating the process.


L0_ = new_L;

// Adjust U
// U = [ U0 0 ]
// [ 0 I ]

i_t U_nz = U0_.col_start[m];
U0_.col_start.resize(m + cuts_basic.m + 1);
U0_.i.resize(U_nz + cuts_basic.m);
U0_.x.resize(U_nz + cuts_basic.m);
for (i_t k = m; k < m + cuts_basic.m; ++k) {
U0_.col_start[k] = U_nz;
U0_.i[U_nz] = k;
U0_.x[U_nz] = 1.0;
U_nz++;
}
U0_.col_start[m + cuts_basic.m] = U_nz;
U0_.n = m + cuts_basic.m;
U0_.m = m + cuts_basic.m;

compute_transposes();

// Adjust row_permutation_ and inverse_row_permutation_
row_permutation_.resize(m + cuts_basic.m);
inverse_row_permutation_.resize(m + cuts_basic.m);
for (i_t k = m; k < m + cuts_basic.m; ++k) {
row_permutation_[k] = k;
}
inverse_permutation(row_permutation_, inverse_row_permutation_);

// Adjust workspace sizes
xi_workspace_.resize(2 * (m + cuts_basic.m), 0);
x_workspace_.resize(m + cuts_basic.m, 0.0);

return 0;
}

template <typename i_t, typename f_t>
void basis_update_mpf_t<i_t, f_t>::gather_into_sparse_vector(i_t nz,
sparse_vector_t<i_t, f_t>& out) const
Expand Down Expand Up @@ -2065,7 +2271,7 @@ int basis_update_mpf_t<i_t, f_t>::refactor_basis(
q,
deficient,
slacks_needed) == -1) {
settings.log.debug("Initial factorization failed\n");
settings.log.printf("Initial factorization failed\n");
basis_repair(A, settings, deficient, slacks_needed, basic_list, nonbasic_list, vstatus);

#ifdef CHECK_BASIS_REPAIR
Expand Down
2 changes: 2 additions & 0 deletions cpp/src/dual_simplex/basis_updates.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -291,6 +291,8 @@ class basis_update_mpf_t {
reset_stats();
}

i_t append_cuts(const csr_matrix_t<i_t, f_t>& cuts_basic);

f_t estimate_solution_density(f_t rhs_nz, f_t sum, i_t& num_calls, bool& use_hypersparse) const
{
num_calls++;
Expand Down
Loading