@@ -709,7 +709,9 @@ def factorize(
709709 ``pd.factorize(values)``. The results are identical for methods like
710710 :meth:`Series.factorize`.
711711
712- >>> codes, uniques = pd.factorize(np.array(['b', 'b', 'a', 'c', 'b'], dtype="O"))
712+ >>> codes, uniques = pd.factorize(
713+ ... np.array(['b', 'b', 'a', 'c', 'b'], dtype="O")
714+ ... )
713715 >>> codes
714716 array([0, 0, 1, 2, 0])
715717 >>> uniques
@@ -718,8 +720,9 @@ def factorize(
718720 With ``sort=True``, the `uniques` will be sorted, and `codes` will be
719721 shuffled so that the relationship is the maintained.
720722
721- >>> codes, uniques = pd.factorize(np.array(['b', 'b', 'a', 'c', 'b'], dtype="O"),
722- ... sort=True)
723+ >>> codes, uniques = pd.factorize(
724+ ... np.array(['b', 'b', 'a', 'c', 'b'], dtype="O"), sort=True
725+ ... )
723726 >>> codes
724727 array([1, 1, 0, 2, 1])
725728 >>> uniques
@@ -729,7 +732,9 @@ def factorize(
729732 the `codes` with the sentinel value ``-1`` and missing values are not
730733 included in `uniques`.
731734
732- >>> codes, uniques = pd.factorize(np.array(['b', None, 'a', 'c', 'b'], dtype="O"))
735+ >>> codes, uniques = pd.factorize(
736+ ... np.array(['b', None, 'a', 'c', 'b'], dtype="O")
737+ ... )
733738 >>> codes
734739 array([ 0, -1, 1, 2, 0])
735740 >>> uniques
0 commit comments